Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney.
نویسندگان
چکیده
The mechanisms involved in renal ischemia-reperfusion injury (IRI) are complex and appear to involve the early participation of bone marrow-derived cells. T lymphocytes participate in the pathogenesis of IRI. Sphingosine 1-phosphate (S1P) induces peripheral T cell depletion. Therefore, we hypothesized that S1P1 receptor activation protects kidney from IRI. FTY-720, a non-receptor-selective sphingosine analog, was given intraperitoneally to C57BL/6 mice, and animals were subjected to ischemia for 32 min followed by reperfusion for 24 h. Plasma creatinine, blood count, myeloperoxidase (MPO) activity, and renal histology were determined. IRI led to a marked increase in plasma creatinine, MPO activity, leukocyte infiltration, and vascular permeability. FTY-720 significantly decreased plasma creatinine in a dose-response manner with a maximal reduction of approximately 73 and approximately 69% with doses of 240 and 48 microg/kg, respectively. MPO, leukocyte infiltration, vascular permeability, and peripheral blood lymphocyte counts were markedly decreased with FTY-720 treatment. The protective effect of FTY-720 was reversed with VPC-44116, a selective S1P1 receptor antagonist. Furthermore, SEW-2871, a selective S1P1 agonist, significantly decreased plasma creatinine in a dose-response manner with a maximal reduction of approximately 70% with a dose of 10 mg/kg. Analysis of kidneys by light microscopy revealed minimal histological signs of ischemic injury with FTY-720 or SEW-2871 treatment compared with the vehicle group. Using RT-PCR, we found a time-dependent increase in the S1P1 mRNA expression following IRI that begins after 2 h with the maximum expression at approximately 4 h. We conclude that the protective effect of FTY-720 is due primarily to activation of S1P1 receptors. The mechanism of protection is not known but may be related to peripheral lymphocyte depletion or direct effects on kidney cells expressing S1P1 receptor.
منابع مشابه
Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia
Renal ischemia-reperfusion injury is a major cause of acute kidney injury. We previously found that renal A(1) adenosine receptor (A(1)AR) activation attenuated multiple cell death pathways including necrosis, apoptosis, and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1-phosphate (S1P) synthesis might be the mechanism of protection...
متن کاملSelective Sphingosine 1-Phosphate 1 (S1P1) Receptor Activation Reduces Ischemia-Reperfusion Injury in Mouse Kidney
The mechanisms involved in renal ischemia-reperfusion injury (IRI) are complex and appear to involve the early participation of bone marrow derived cells. T lymphocytes participate in the pathogenesis of IRI. Sphingosine 1-phosphate (S1P) induces peripheral T cell depletion. Therefore we hypothesized that S1P 1 receptor activation protects kidney from IRI. FTY720; a non receptor-selective sphin...
متن کاملActivation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury.
Agonists of the sphingosine-1-phosphate receptor (S1PR) attenuate kidney ischemia-reperfusion injury (IRI). Previous studies suggested that S1P1R-induced lymphopenia mediates this protective effect, but lymphocyte-independent mechanisms could also contribute. Here, we investigated the effects of S1PR agonists on kidney IRI in mice that lack T and B lymphocytes (Rag-1 knockout mice). Administrat...
متن کاملA1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury.
Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R inju...
متن کاملIntravenous Sphingosylphosphorylcholine Protects Ischemic and Postischemic Myocardial Tissue in a Mouse Model of Myocardial Ischemia/Reperfusion Injury
HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-depen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 290 6 شماره
صفحات -
تاریخ انتشار 2006